CS2910 Revision Notes

Symbolic AI Revision Notes (CS2910 2024-25)

1. Search Algorithms

  • Definition: Explore state space without domain-specific knowledge
  • Types:
    • Breadth-First Search (BFS)
      • Expands shallowest nodes first
      • Complete & optimal for uniform costs
      • Space: O(b^d)
    • Depth-First Search (DFS)
      • Expands deepest nodes first
      • Not complete (infinite depth), not optimal
      • Space: O(bm)
    • Iterative Deepening
      • Combines BFS completeness with DFS space efficiency
      • Time: O(b^d)
  • Heuristic Function h(n): Estimates cost to goal
  • Greedy Best-First
    • Minimizes h(n)
    • Incomplete, not optimal
  • A Algorithm*
    • Minimizes f(n) = g(n) + h(n)
    • Requirements:
      • Admissible h(n) ≤ h*(n)
      • Consistent h(n) ≤ c(n,a,n’) + h(n’)
    • Properties: Complete & optimal
  • Minimax Algorithm:
    • MAX (player) maximizes utility
    • MIN (opponent) minimizes utility
    • Complexity: O(b^m)
  • Alpha-Beta Pruning:
    • Prunes irrelevant branches
    • Optimal pruning reduces complexity to O(b^(m/2))

2. Logical Inference

2.1 Propositional Logic

  • Syntax:
    • Atoms: P, Q, R
    • Connectives: ¬, ∧, ∨, →, ↔
  • Semantics:
    • Truth tables
    • Validity & Satisfiability
  • Inference Methods:
    • Resolution:
      1
      α ∨ β, ¬β ∨ γ => α ∨ γ
    • Forward Chaining: Data-driven (KB → Query)
    • Backward Chaining: Goal-driven (Query → KB)

2.2 First-Order Logic (FOL)

  • Syntax:
    • Variables, Constants, Predicates, Quantifiers (∀, ∃)
  • Unification:
    • Find substitution θ s.t. Pθ = Qθ
    • MGU (Most General Unifier) algorithm
  • Resolution in FOL:
    • Lifts propositional resolution with unification
    • Requires conversion to CNF

2.3 Inference Mechanisms

Mechanism Direction Use Case
Forward Chaining Bottom-up Rule-based systems
Backward Chaining Top-down Goal-directed queries
Resolution Both Automated theorem proving

3. Knowledge Representation

3.1 Frames & Semantic Networks

  • Frames: Object-oriented representation with slots
  • Semantic Networks:
    • Nodes = concepts
    • Edges = relationships (is-a, part-of)
  • Default Reasoning:
    • Negation-as-Failure (NAF)
    • “Assume P true unless proven otherwise”

3.2 Temporal Reasoning

  • Situation Calculus:
    • States as sequences of actions
    • Frame Problem: Representing unchanged fluents
  • Event Calculus:
    • Events initiate/terminate fluents
    • Time points & intervals

4. Planning

4.1 Classical Planning (STRIPS)

  • Components:
    • States: Conjunctions of atoms
    • Goals: Partially specified states
    • Operators: Precondition/Effect pairs
  • Algorithms:
    • Forward State-Space Search
    • Backward Goal Regression
  • Planning Graphs (GRAPHPLAN):
    • Mutex relations prevent conflicting actions
    • Polynomial-time plan existence checking

5. Inductive Learning

5.1 Decision Trees

  • Entropy: Measure of impurity

    1
    Entropy(S) = -Σ p_i log₂ p_i
  • ID3 Algorithm:

    • Select attributes with maximum Information Gain

$$IG(S,A) = Entropy(S) - Σ (|S_v|/|S|) Entropy(S_v)
$$

5.2 Inductive Logic Programming

  • Inverse Resolution:

    • Generalize clauses from examples
    • Combines background knowledge with training data
  • FOIL Algorithm:

    • Learns Horn clauses from positive/negative examples

6. Prolog Programming

6.1 Key Features

  • Unification: Pattern matching with variables
1
p(X, f(Y)) = p(a, f(b)) % X=a, Y=b
  • Depth-First Search: With backtracking
  • Cut Operator (!): Prunes search space

6.2 Example: Family Relations

1
2
3
parent(john, mary).
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

7. Historical Foundations

7.1 Key Papers

  • McCulloch & Pitts (1943): Neural network models
  • Dartmouth Proposal (1956): Coined “Artificial Intelligence”
  • Turing (1950): Computing Machinery & Intelligence

7.2 Philosophical Issues

  • Frame Problem
  • Symbol Grounding
  • Commonsense Reasoning

Exam Strategy

  1. Prioritize Core Topics:
  • Search algorithms (40%)
  • Logical inference (30%)
  • Learning & Planning (30%)
  1. Practice Techniques:
  • Manual resolution proofs
  • A* heuristic calculations
  • Decision tree construction
  1. Time Management:
  • Allocate 1.5 mins per mark
  • Answer known questions first
  • Use bullet points for concise answers

CS2910 Revision Notes
https://blog.pandayuyu.zone/2025/05/19/CS2910-Revision-Notes/
Author
Panda
Posted on
May 19, 2025
Licensed under